Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 20(7)2023 03 30.
Article in English | MEDLINE | ID: covidwho-2297552

ABSTRACT

Artificial intelligence (AI) has revolutionized numerous industries, including medicine. In recent years, the integration of AI into medical practices has shown great promise in enhancing the accuracy and efficiency of diagnosing diseases, predicting patient outcomes, and personalizing treatment plans. This paper aims at the exploration of the AI-based medicine research using network approach and analysis of existing trends based on PubMed. Our findings are based on the results of PubMed search queries and analysis of the number of papers obtained by the different search queries. Our goal is to explore how are the AI-based methods used in healthcare research, which approaches and techniques are the most popular, and to discuss the potential reasoning behind the obtained results. Using analysis of the co-occurrence network constructed using VOSviewer software, we detected the main clusters of interest in AI-based healthcare research. Then, we proceeded with the thorough analysis of publication activity in various categories of medical AI research, including research on different AI-based methods applied to different types of medical data. We analyzed the results of query processing in the PubMed database over the past 5 years obtained via a specifically designed strategy for generating search queries based on the thorough selection of keywords from different categories of interest. We provide a comprehensive analysis of existing applications of AI-based methods to medical data of different modalities, including the context of various medical fields and specific diseases that carry the greatest danger to the human population.


Subject(s)
Biomedical Research , Medicine , Humans , Artificial Intelligence , Health Services Research , Software
2.
Sci Rep ; 13(1): 6401, 2023 04 19.
Article in English | MEDLINE | ID: covidwho-2304166

ABSTRACT

Coherent activations of brain neuron networks underlie many physiological functions associated with various behavioral states. These synchronous fluctuations in the electrical activity of the brain are also referred to as brain rhythms. At the cellular level, rhythmicity can be induced by various mechanisms of intrinsic oscillations in neurons or the network circulation of excitation between synaptically coupled neurons. One specific mechanism concerns the activity of brain astrocytes that accompany neurons and can coherently modulate synaptic contacts of neighboring neurons, synchronizing their activity. Recent studies have shown that coronavirus infection (Covid-19), which enters the central nervous system and infects astrocytes, can cause various metabolic disorders. Specifically, Covid-19 can depress the synthesis of astrocytic glutamate and gamma-aminobutyric acid. It is also known that in the post-Covid state, patients may suffer from symptoms of anxiety and impaired cognitive functions. We propose a mathematical model of a spiking neuron network accompanied by astrocytes capable of generating quasi-synchronous rhythmic bursting discharges. The model predicts that if the release of glutamate is depressed, normal burst rhythmicity will suffer dramatically. Interestingly, in some cases, the failure of network coherence may be intermittent, with intervals of normal rhythmicity, or the synchronization can disappear.


Subject(s)
Astrocytes , COVID-19 , Humans , Astrocytes/metabolism , COVID-19/metabolism , Neurons/metabolism , Brain/metabolism , Glutamic Acid/metabolism , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL